A simple two-step silane-based (bio-) receptor molecule immobilization without additional binding site passivation

نویسندگان

  • A. Gang
  • G. Gabernet
  • L. D. Renner
  • L. Baraban
  • G. Cuniberti
چکیده

We present a simple method for immobilizing (bio-) receptor molecules on glass surfaces using the silane 3-(triethoxysilyl)propylsuccinic anhydride (TESPSA). Its succinic anhydride functionality enables the covalent binding of amino-terminated molecules in a ring opening reaction under formation of an amide bond. We demonstrate proofof-concept using fluorescence microscopy that antibodies immobilized with the developed method maintain their specificity for their fluorescently labelled analytes, and that no additional binding site passivation is required. Therefore, the presented method significantly facilitates the functionalization of surfaces for a wide range of biosensor systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple procedure to improve the surface passivation for single molecule fluorescence studies.

The single-molecule fluorescence technique is becoming a general and mature tool to probe interactions and dynamics of biomolecules with ultra high precision and accuracy. However, nonspecific adsorption of biomolecules to the flow cells remains a major experimental riddle for the study of many complex biological systems, especially those exhibiting low binding affinity and presenting with weak...

متن کامل

A novel immunoglobulin G monolayer silver bio-nanocomposite

BACKGROUND Nanoparticles have a large number of surface atoms, which translates into a significant increase in the surface energy. Once introduced in a biological environment they tend to interact with proteins and form a protein corona shell. The aim of this study was to develop a novel, silver based, bio-nanocomposite for biological applications. Immunoglobulin G (IgG) molecule was chosen for...

متن کامل

Theoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles

Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...

متن کامل

Theoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles

Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...

متن کامل

Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability.

The present work aims to improve the sensitivity of an electrical biosensor by simply changing a surface property of the passivation layer, which covers the background region except for the sensing site for electrical isolation among adjacent interconnection lines. The hydrophobic passivation layer dramatically enhances the sensitivity of the biosensor when compared with a hydrophilic passivati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015